41 research outputs found

    FEDSM-ICNMM2010-30971 NUMERICAL ANALYSIS OF MIXING IN A MULTIFUNCTION ELECTROMAGNETIC MICROPUMP

    Get PDF
    ABSTRACT This work presents numerical study on the feasibility of implementing a newly introduced electromagnetic pump for mixing fluids in microscales. It also introduces an interesting energization scheme that can be used to adjust the mixing length until obtaining complete mixing. The electromagnetic gentle pump was proposed for biomedical applications. It consists of an annular fluidic channel, set of solenoids, two permanent magnets and a cover. The pumping concept depends on controlling the rotation of the two hard magnets placed in an annular channel in opposing polarity under the influence of an electronically controlled moving electromagnetic field. This concept is currently under development for microfluidic applications using polymer micromachining. Results have been visualized through plotting mass fraction contours along the channel length. Results are motivating and showed higher mass fraction of H 2 O at low channel widths

    An In-Line photonic biosensor for monitoring of glucose concentrations

    Get PDF
    This paper presents two PDMS photonic biosensor designs that can be used for continuous monitoring of glucose concentrations. The first design, the internally immobilized sensor, consists of a reactor chamber, micro-lenses and self-alignment structures for fiber optics positioning. This sensor design allows optical detection of glucose concentrations under continuous glucose flow conditions of 33 μL/h based on internal co-immobilization of glucose oxidase (GOX) and horseradish peroxidase (HRP) on the internal PDMS surface of the reactor chamber. For this design, two co-immobilization methods, the simple adsorption and the covalent binding (PEG) methods were tested. Experiments showed successful results when using the covalent binding (PEG) method, where glucose concentrations up to 5 mM with a coefficient of determination (R2) of 0.99 and a limit of detection of 0.26 mM are detectable. The second design is a modified version of the internally immobilized sensor, where a microbead chamber and a beads filling channel are integrated into the sensor. This modification enabled external co-immobilization of enzymes covalently onto functionalized silica microbeads and allows binding a huge amount of HRP and GOX enzymes on the microbeads surfaces which increases the interaction area between immobilized enzymes and the analyte. This has a positive effect on the amount and rate of chemical reactions taking place inside the chamber. The sensor was tested under continuous glucose flow conditions and was found to be able to detect glucose concentrations up to 10 mM with R2 of 0.98 and a limit of detection of 0.7 mM. Such results are very promising for the application in photonic LOC systems used for online analysis © 2014 by the authors; licensee MDPI, Basel, Switzerland.This work has been funded by the German Research Foundation (DFG) within the framework of the Research Unit 856 Microsystems for Particulate Life-Science Products. One of the authors (S.B.) gratefully acknowledges the financial support of the Volkswagen Foundation. We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)Peer Reviewe

    Biofunctionalized all-polymer photonic lab on a chip with integrated solid-state light emitter

    Get PDF
    A photonic lab on a chip (PhLOC), comprising a solid-state light emitter (SSLE) aligned with a biofunctionalized optofluidic multiple internal reflection (MIR) system, is presented. The SSLE is obtained by filling a microfluidic structure with a phenyltrimethoxysilane (PhTMOS) aqueous sol solution containing a fluorophore organic dye. After curing, the resulting xerogel solid structure retains the emitting properties of the fluorophore, which is evenly distributed in the xerogel matrix. Photostability studies demonstrate that after a total dose (at l = 365 nm) greater than 24 J/cm2, the xerogel emission decay is only 4.1%. To re-direct the emitted light, the SSLE includes two sets of air mirrors that surround the xerogel. Emission mapping of the SSLE demonstrates that alignment variations of 150 mm (between the SSLE and the external pumping light source) provide fluctuations in emitted light smaller than 5%. After this verification, the SSLE is monolithically implemented with a MIR, forming the PhLOC. Its performance is assessed by measuring quinolone yellow, obtaining a limit of detection (LOD) of (0.60 +/- 0.01) mM. Finally, the MIR is selectively biofunctionalized with horseradish peroxidase (HRP) for the detection of hydrogen peroxide (H2O2) target analyte, obtaining a LOD of (0.7 +/- 0.1) mM for H2O2, confirming, for the first time, that solid-state xerogel-based emitters can be massively implemented in biofunctionalized PhLOCs

    Development of a novel electromagnetic double action meso-scale pump

    Get PDF
    This paper presents the design and performance evaluation of a meso-scale electromechanical fluid pump. A prototype was designed and fabricated using Polycarbonate for the housings and controlled by sequential pulsing of channel piston and valve coils. The pumping concept is based on reciprocating a hard magnet acting as a piston in a circular channel, and synchronizing this movement with two electromagnetically actuated valves located at the pump inlet and outlet ports. The pumping system is programmed to allow simultaneous energization of a set of coils that control the magnet positions. Each pump port has an inlet and outlet channel. According to the piston movement direction, i. e. clockwise or counter clockwise, the valve will change its position to allow for inflow or outflow. The pump concept was tested on a meso-scale setup for pumping water. Tests showed that a magnet rotational speed of 70 strokes per minute is achievable. A flow rate of 6.1 ml/min and a pressure of 400 Pa were obtained at this speed

    Development of 3D Force Sensors for Nanopositioning and Nanomeasuring Machine

    Get PDF
    In this contribution, we report on different miniaturized bulk micro machined three-axes piezoresistive force sensors for nanopositioning and nanomeasuring machine (NPMM). Various boss membrane structures, such as one boss full/cross, five boss full/cross and swastika membranes, were used as a basic structure for the force sensors. All designs have 16 p-type diffused piezoresistors on the surface of the membrane. Sensitivities in x, y and z directions are measured. Simulated and measured stiffness ratio in horizontal to vertical direction is measured for each design. Effect of the length of the stylus on H:V stiffness ratio is studied. Minimum and maximum deflection and resonance frequency are measured for all designs. The sensors were placed in a nanopositioning and nanomeasuring machine and one point measurements were performed for all the designs. Lastly the application of the sensor is shown, where dimension of a cube is measured using the sensor

    Application of an E-Tongue to the Analysis of Monovarietal and Blends of White Wines

    Get PDF
    This work presents a multiparametric system capable of characterizing and classifying white wines according to the grape variety and geographical origin. Besides, it quantifies specific parameters of interest for quality control in wine. The system, known as a hybrid electronic tongue, consists of an array of electrochemical microsensors-six ISFET based sensors, a conductivity sensor, a redox potential sensor and two amperometric electrodes, a gold microelectrode and a microelectrode for sensing electrochemical oxygen demand-and a miniaturized optofluidic system. The test sample set comprised eighteen Catalan monovarietal white wines from four different grape varieties, two Croatian monovarietal white wines and seven bi- and trivarietal mixtures prepared from the Catalan varieties. Different chemometric tools were used to characterize (i.e., Principal Component Analysis), classify (i.e., Soft Independent Modeling Class Analogy) and quantify (i.e., Partial-Least Squares) some parameters of interest. The results demonstrate the usefulness of the multisensor system for analysis of wine

    Hybrid Electronic Tongues Applied to the Quality Control of Wines

    Get PDF
    The legislation of food industry is becoming increasingly strict with regard to the quality of food products. Therefore, the market is demanding for automatic systems of analysis that allow fast and accurate monitoring of the evolution of quality parameters in agrofood products or permit obtaining information to optimize production processes. In this context, sensors and more specifically microsensors play an important role since they allow fast and reproducible measurement of a large number of quality parameters with good reliability and can be implemented in portable systems. This paper presents a review of the results obtained with an electronic tongue based on different kinds of microsensors applied to wine analysis by the team of IMB-CNM. This multisensor system allows on one hand classifying the wine according to its features like grape variety, geographic origin, year, and organoleptic characteristics and on the other hand quantifying some parameters of interest in quality control, such as alcoholic degree, pH, ions, total acidity, glycerol, and color

    Development and integration of xerogel polymeric absorbance micro-filters into lab-on-chip systems

    Get PDF
    This work reports on the implementation of different absorption micro-filters based on a dye-doped hybrid organic-inorganic xerogel polymeric material synthesized by the sol-gel process. Microstructures containing eight different filter widths were fabricated in polydimethylsiloxane (PDMS), bonded to glass substrates and filled with the corresponding dye doped polymeric material by a soft lithography approach. The filtering capacity as a function of dye concentration and filter width was studied and revealed a linear dependence with both parameters, as expected according to the Beer-Lambert law. Zero passband transmittance values and relatively sharp stopband regions were achieved with all the filters, also showing rejection levels between −6 dB and −55 dB. Finally, such filters were monolithically integrated into a disposable fluorescence-based photonic lab-on-a-chip (PhLoC) approach. Calibration curves carried out with a model fluorophore target analyte showed an over two-fold increase in sensitivity and a thirty-fold decrease of the limit of detection (LOD) compared with the values recorded using the same PhLoC system but without the polymeric filter structure. The results presented herein clearly indicate the feasibility of these xerogel-based absorbance filtering structures for being applied as low-cost optical components that can be easily incorporated into disposable fluorescence-based photonic lab on a chip systems
    corecore